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Abstract—Recent? NASA mission failures (e.g., Mars orbiter) mission cost $328 millions to NASA; vallab

Polar Lander and Mars Orbiter) illustrate the intpnce of
having an efficient verification and validation pess for
such systems. One software error, as simple asyt me,
can cause the loss of an expensive mission, orttebddget
overruns and crunched schedules. Unfortunatelgjtivaal
verification methods cannot guarantee the abseheerars
in software systems. Therefore, we have developeCGS
static program analysis tool, which can exhaustieslalyze
large C programs. CGS analyzes the source code
identifies statements in which arrays are accessédof

scientific data could not be obtained either.

Unfortunately, traditional verification methods ¢bu as
testing) cannot guarantee the absence of errossftware
systems. Therefore, it is important to build vesfion tools
that exhaustively check for as many classes ofreras
possible. Static program analysis is a verificatiechnique
that identifies faults, or certifies the absencefaflts, in
amsoftware without having to execute the program.ngshe
formal semantic of the programming language (C im o

bounds, or, pointers are used outside the memajipre case), this technique analyses the source codgafgram

they should address.
description of CGS and its theoretical foundatiobsalso
reports on the use of CGS on real NASA softwar¢esys

This paper gives a high-levdboking for faults of a certain type. We have depeld a

static program analysis tool, called C Global Syove
(CGS), which can analyze large C programs for emiéed

used in Mars missions (from Mars PathFinder to Marsoftware systems. CGS analyzes the source code of C

Exploration Rover) and on the International Spaeei&.
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1. INTRODUCTION

Recent NASA mission failures (e.g., Mars Polar Lemand
Mars Orbiter) illustrate the difficulty of buildingmbedded
software systems for space exploration and the itapoe
of having an efficient verification and validatidiv&V)

process for such systems. One software errorngdesias it
may be, can cause the loss of an expensive mi¢$RBD
millions at least for a mission to Mars), or leadbudget
overruns and crunched schedules. For example odsedf
both spacecrafts in the Mars Surveyor 98 (the laadd the
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programs and identifies statements in which arrays
accessed out of bounds, or, pointers are useddeutbe
memory region they should address. CGS does
verification using static analysis techniques basadthe
theory of Abstract Interpretation. Even though #ralysis
predicts what will happen at runtime, it is perfecnat
compile time. Therefore, it does not require executhe
program and providing input test data. Moreover,SCG
analysis is conservative in the sense that it peoall
checks necessary to find all errors of the same ip our
case, all out-of-bound array accesses).

its

This paper gives a high-level description of thehéecture

of CGS and the theoretical foundations (Abstract
Interpretation) supporting the correctness of thalysis.
More importantly, we report on the use of CGS oal re
NASA software systems. We have analyzed flightvearfé
used in Mars missions (from Mars PathFinder to Mars
Exploration Rover) as well as software used to rabnt
experiments on the International Space Station.Sites of
the software systems analyzed range from 40 ta&@Cs.
The analysis times range from 5 minutes to 24 hoar®C
platforms running Linux. The analyses did not reguany
modifications of the original source code.



2 STATIC ANALYSISFOR V& V (3) Out-of-bound array access, e.g[10] wherea is an
array of size less or equal to 10 (assuming that

The goal of static program analysis is to assesgepties of indexing starts at 0).

a program without executing the program. Statidysighas 4)
its roots in compiler optimization. Most compileds not
perform verification beyond type checking and sfipiad
syntactic checks because they focus on getting kquic
feedback to the code developer. However, they ejnan

fairly sophisticated analyses for code optimizatimtause (5) Invalid arithmetic operations, e.g., taking the agu
the user is willing to pay a penalty (in terms ofrpilation root of a negative number.

time) and obtain optimized code. In other wordss fine to

spend a little more time optimizing the code (whigllone  (6) Non-terminating loops, e.g., the exit condition af

Arithmetic underflow/overflow, e.g., the programeso
not take into account that the storage of a conapute
value might take more bits than is allocated fog th
variable holding the value.

once) if it makes the numerous executions run faStgtic loop can never be evaluated to false (Note thatt mos
program analysis pushes the idea further by usieg enore embedded programs contain non-terminating loops,
sophisticated analyses to find, at compile-timeysbthat can such aswhile true do ..;by design).

happen at run-time. The rationale is that it istv@pending
time analyzing the software if it cuts down on manu (7) Non-terminating calls, i.e., the control flow of a

testing. This is what makes static analysis aftrado the program never returns from the call to a function
verification community. (because this function has a non-terminating lamp f
example).

Several techniques can be used to perform stattyss.

Theorem proving, data flow analysis [12], constrainiving ~ The price to pay for exhaustive coverage is incenepless

[1], and abstract interpretation [4,5] are among thost (i.€., impossibility of determining the safety dif @erations

popular. We could devote an entire article, if seteral, to  With exact precision). In other words, the analyzan raise

the comparison of these techniques. However, mphper, false alarms on some operations that are actualfg. s

we only focus on one technique, abstract interficetaand ~ However, if the analyzer deems an operation sdfen t

show its applicability to real embedded software. errors cannot occur on any execution path. The rarog
analyzer can also detect certain runtime errorghwvbiccur

The theory of Abstract Interpretation pioneeredRatrick ~ €Vvery time the execution reaches some point iptbgram.

and Radhia Cousot in the mid 70's provides algmstifior

building program analyzers which can detect alltime  Traditionally, there are two complementary uses aof

errors by exploring the text of the program [4,3he  Program analyzer:

program is not executed and no test case is needed.

program analyzer based on Abstract Interpretasom kind (1) as a debugger that detects runtime errors staticall

of theorem prover that infers properties aboutekecution without executing the program, and

of the program from its text (the source code) arfdrmal

specification of the semantics of the language ¢wiig built ~ (2) @S @ preprocessor that reduces the number of

in the analyzer). The fundamental result of Abdtrac potentially dangerous operations that have to be
Interpretation is that program analyzers obtaineg b checked by a traditional validation process (code
following the formal framework defined by Patrickica reviewing, test writing, and so on).

Radhia Cousot are guaranteed to cover all

possib , . : . .
execution paths. L‘Iahe first use is akin to traditional debugging; teveloper

tries to flush as many as bugs as he can fromatie before
it gets to verification. The second use is calledification;
the goal is to prove the absence of errors of taiceclass,
thus, alleviating the need for testing for thisselaf errors.
This requires that the static analyzer achievesoadg
selectivity - the percentage of operations whioh @roven
to be safe by the program analyzer. Indeed, if 5%l
operations in the program are marked as potentially
dangerous by the analyzer, there are no benefitssittg
such techniques. In the rest of the paper, we ttefehese
two different types of static analysis as certiiiza and
debugging.

Runtime errors are errors that cause exceptiomsraime.
Typically, in C, either they result in creating @& dump or
they cause data corruption that may cause crasinehis
study we mostly looked for the following runtimeas:

(1) Access to un-initialized variables, i.e., variabtbat
are used even though they have not yet been adsigne
value.

(2) Access to un-initialized pointers, i.e., pointdnattare
de-referenced (i.e., attempt to read from or wtéhe

memory region pointed by the pointer) without hgvin . . )
been assigned to a memory region. The question is: when should one use debugging or

certification? On one hand, debugging is usualstefg but



incomplete (since it does not find all the bugs).t@e other thousands of lines of code. Certification can bey weseful
hand, certification is complete, but it takes qaitlong time.  in the phase of system integration. Since the whpdéem is
So, which one should one use? The answer is batmdi  put together, the analysis only considers a cohesen of
at the same stage of the software development ggotet inputs to each function and module. This can paityt
us put it in terms of the V diagram shown in FiglirBlack  vyield good precision. The goal of our work is toakate
dash arrows indicate the flow of verification whilkdue  whether this can really be done for realistic safev
(alternating dots and dashes) arrows indicate whatystems, especially those used in aerospace.
development phase is validated by what validatioasp. In

general, static analysis applies to the phasebdnyellow

(shaded) zone. 3. C GLOBAL SURVEYOR

C Global Surveyor (CGS) is a scalable, preciseicstat
analyzer that detects memory errors in C progr&maply
....................... if. ing stated, CGS takes the source code of a softwartensys
- written in C, builds an abstract model of it, amalszes it to
detect errors such as out-of-bound array accessge-
..................... referencing of null pointers. CGS analysis is exiaa (all

possible execution paths are explored), conseevatall
errors, including potential ones, are flagged), dnds not
require test cases or even executing the progratmatW
differentiates CGS from other static analyzersssbility to
scale to large systems (more than 250 KLOC) and its
precision (less than 15% false positives) [3]. Sty is a
minimal requirement to be useful to any NASA missio
Precision is critical to user acceptance, sinceneegs tend
to get discouraged by the high number of warningslypced
by static analyzers.

S/W Unit
Testing

Abstract interpretation
Abstract Interpretation [5,8,9] is a theoreticaarfrework

KEY developed by Patrick and Radhia Cousot that gives a
Phase I methodology for constructing static analyses. Thajom
Product — feature of a static analyzer based on Abstractpntgation
Verify ~ ----- > consists of the mathematical guarantee that alpgntes
Validate — hereby computed hold for all possible executiomhgatf the

program. The core idea behind this theory is thefahuse

of the notion of approximation all possible values a
variable can take at a certain program point are
Figure 1. Place of Static Analysis in S/W Lifecycle approximated by a set that can be compactly reptedes

an interval in the case of scalar variables fomgxa. All
possible values of the variable are guaranteedetavithin

this set, thus ensuring the soundness of the asalys
However, infeasible value assignments of the véiaan

be introduced because of the approximation procEsks.
results into a number dhlse alarms where the analyzer
detects a potential problem at some program statieme
because of approximations in the assessment of some
variable ranges whereas the program is safe iityre@he
main point though is that a statement deemed as csaf
never cause an error. This is the backbone of adistr
interpretation-based program certification.

Static Analysis

Let us ignore the software detailed design phaseaise it
requires a special type of static analysis). Demgyés the
most useful in the software coding phase. The dgezlcan
quickly find a range of bugs and gain some configethat
the software might not crash at run-time. Debuggingld
also be applied in the unit verification and softva
integration phase. However, debugging does not goe
any coverage information (as opposed to sophisticat
testing techniques). Therefore, it cannot measoxe \vell
you have tested the units or the system. Now, fioartiion
gives you that coverage (actually, it guarantee§%d0
coverage of all the control and data paths). Inegan its
application for unit testing requires writing (oergerating)
drivers for each of the units. This pre-requiregpsmight
take some time, but the analyses should be faity &nd
precise, especially if the size of each unit istkepa few

3

Intuitively, the process of abstract interpretatisn very
similar to that of designing a system in contrakdty: a
physical system is first modeled using a systenpantial
differential equations which is not directly solebin



general and for which approximate numerical regarut
schemes are employed. The choice of the approximati
guides the construction of the static analyzer. éDan
approximation scheme has been designed for allctsbje
manipulated by the family of programs considered w
construct a translator from the program source ansystem
of semantic equationsThese equations model the flow of
information between the statements of the progrinis
similar in its structure to the code generationsghaf a
compiler, where semantic equations are producddaddsof
assembly code. This phase is called ihéd in CGS. Any
solution of the semantic equations is a sound aqupedion

of all possible values of the program variablesic8iwe
want to limit the number of false alarms caused tiy
approximation we are interested in the smallesttsni of
these equations which is guaranteed to exist (58 for
more details). Unfortunately this smallest solutisnnot
always computable or can take too much time to ecdenp
Therefore we have to use heuristics that can leatbua
solution that is “as good as possible” (by usideningand

for (i = 0; i < 10; i++) Numerical invariants
for (j =0; j <100; j++)
ST = .. 0 <=i <10
0 <=j < 100

Points-to graph
S| f

Figure 2. Combining numerical invariants and painte
analysis

The second major problem in the design of a soalstatic
analyzer is the management of the memory. The nuabe
artifacts produced by a static analyzer is tremeaadéor
example, the semantic equations of the smalleghtfli

narrowing operators [5,6,13]) with reasonable executionSOftware we have analyzed (140 KLOC) required nibae

times. This phase is called thelvein CGS. Because of the
sub-optimality of the solution computed during thisase,
CGS allows the user to iterate the solve in a faekithoop,
thus enabling a stepwise refinement of the results.

Architecture

Large programs as those developed for the MarsoEidn

the 1GB memory available on our computers. Thisiireg
a smart memory management in which we can dynalyical
load and unload artifacts. We chose a databaseicent
architecture in which a relational database plhgsrole of a
persistent network-transparent memory. This alskesishe
implementation of distributed analysis algorithmmer
since there is no stream of data between two psesesn
two different hosts, everything being centralizeithim the

Program pose a number of challenges in designing afatabase. Moreover we do not have to handle mutual

efficient static analyzer. Determining how objecsd
variables may be connected in memory via pointsrs i
problem known as pointer analysis. This is a vettiva
research area which has produced over the yeaesatev
good algorithms [10,11,14,18] that are able to esdal a
million lines of code. However these algorithms roatnbe
directly applied in our case because they abstaety all
information about positions in arrays and objettserefore
their use would cause an unacceptable level of falarms.
CGS computes numerical relationships between th&arsc

exclusion since this is already part of the databas
management system.

Innovations

To achieve the main goals of CGS, i.e., be scalatevery
precise, we had to go beyond the state-of-themamtsearch

in static analysis. We now describe the six redearc
innovations that had to take place to achieve oatgy The
first two innovations work towards improving scdlép

program variables that are used for indexing arraysihile the last two target precision. The other tumtribute

controlling loop iterations and performing pointer
arithmetic. These numerical relationships are Haeased
to perform an array-sensitive pointer analysis.roupments
on this analysis can be found in [15,16]. Thidlisstrated in
Figure 2 where all elements of the array S.f arenorg
blocks of size 100 except the first one, thus causa
memory error during the execution of the loop nest.

Classical abstract interpretation algorithms whichn
discover numerical relationships between prograrakites
do not scale to the large programs we were corisgleWe
tackled the time complexity problem in two diffeten
directions. First, we improved the scalability ofisting
algorithms using adaptive variable clustering ascdbed
below. Second, we designed a distributed architector
CGS that enables the distribution of the staticlyais
algorithms over a cluster of machines.

to both scalability and precision.

CGS relies on scalable abstract numerical domains,
switching from one to the other in an adaptive nesinkVe
rely on two main abstract domains. First, numerictdrvals
allow us to track information about integer varesl
Second, we can also express numerical constragteebn
pairs of variables (e.g., x<¥ ¢) using the difference-bound
matrices domain. It allows for example to track stomints
between loop indices and variables appearing inldbe
body. Unfortunately, this domain does not scaled an
therefore, it applies only to small sets of vargblin [2],
these sets are computed syntactically. We use aptiad
method to keep the size of those sets small. Fiteenaions

of CGS should include a generalization of this réghe that
will allow us to apply even more powerful abstrdommains
(e.g., polyhedra [6]) to even smaller sets of a@msts.



CGS uses distributed algorithms. We are not awhi@ny

static analyzer that can distribute the analysisr meveral . .
processors; CGS can. This gives CGS a speed ageantaBy the end of the analysis CGS has assigned a fset o

since PC machines now come with dual processorsitand poesril(l)arle ;::dcdersesssé)ese;?oer:hsfr thW:h rinr;r:ge_?h?r;gr;atﬂn
also reduces our memory requirements (note that all Ty pe prog ’ ayd

) ; . checking process simply scans these data and clibeks
intermediary results are stored in a common databas

Results interpretation

residing on a disk), thus reducing the risk of ticomsuming

swapping cycles. Whereas swapping does not disshgu

between data in memory, CGS organizes relatedvdttm
the same table in the database. This enablesegiffiaccess
to even very large tables through the databasey qungjine.

CGS mixes flow sensitive and flow insensitive asaly A
flow-sensitive analysis distinguishes between thleies of a
variable at different program point [4,6] whereadlav-
insensitive analysis gives a global approximatidnad
possible values of a variable across the prograhilfl.
Other static analyzers allow using one or the otlGBS
takes a different approach since it depends onrideners
variables are allocated. We observed that localabbes
whose addresses are not taken (used for examprleléa
the elements of an array or traverse a memory bloaky
most of the information and must be representedigely.
These variables are handled in a flow-sensitive maan
while heap allocated data (which are usually subjec
concurrent thread accesses) are treated in a fis@nsitive
manner.

indices against the size of the objects being aeckswe
use a four-color code (green, orange, red, blazljrésent
the results to users. If the set of indices acckdseing the
operation lies within the range of memory cellsrspad by
the object being de-referenced, the operation ésngel safe
and colored in green. If the set of indices beiogeased is
completely disjoint from the memory area coveredtiy
object, this is a definite memory violation thatllwaccur
whenever the operation is performed. The operatfon
flagged in red. If the set of indices being accédseempty,
this simply means that no execution path ever leadbis
operation. In other words, this is dead code andaeler it
in black. In all other cases we color the operatioorange.
An operation flagged in orange has two possiblenines:
it is either an intermittent error that occurs éartain paths
of execution but not for others, or it is a faldarm due to
spurious values for the index caused by the appraton
scheme. The tables stored in the database corgaihin
numerical relationships and the points-to informatican
then be browsed during an interactive SQL sessiaorder
to bring out the causes of a red or orange errois furned
out to be quite useful in practice and this tasidde easily

performed by newly trained users from Marshall @pac
Center on software running on the International cBpa

CGS performs a mutual incremental refinement of theStation

points-to (which determines memory locations, afradses)
and numerical
offsets). Traditionally, the points-to analysisdisne before
any analysis (especially before the numerical ag)ly In
CGS, both analyses feed off each other in an iterat
process; each iteration performs an incrementaheefent
on the precision of the analyses until a globatdixpoint is
reached.

CGS relies on a precise representation of poirigmaetic
in complex data structures such as multi-dimensianmays.
This allows us to compute precise offsets for asl@ynents,
even in the case of multidimensional arrays [17].

CGS also performs a points-to analysis that is>dension
of Das’ algorithm [10]. Das noticed that being psecabout
the first level (or depth) in graphs of pointercremses
drastically the precision of points-to analysis fopst C
programs. It turns out that for software followitige MPF
legacy we need to be precise to the second or lthied. We
therefore implemented a multi-level flow pointsanalysis
that generalizes Das’ idea.

Some of these innovations formed the basis for ldpugy
CGS; others were the results of constantly tesiingideas,
and their implementation, with real NASA softwagstems
such as the MPF and DSL1 flight software.

information (which computes possible

4. APPLICATIONSOF CGS

The MPF software family

What we call the MPF software family consists agHt
software systems that were developed based onlithe f
software system for the Mars PathFinder missiore fiitst
to “re-use” the MPF flight software was the Dee@&pOne

(DS1) mission. DS1 was not a Mars mission; it was a

technology demonstration mission. For example, D&
the Remote Agent experiment, which demonstratediitsie
use of planning and scheduling technology to cdn#éro
spacecraft and the use of an ion drive in spaceaiéé/zed
the conventional part of the flight software (i.the one
directly inherited from MPF). Since the goals of D&ere
different from the goals of MPF, the flight softwawas
slightly different. For example, since DS1 did tend on
any planet, the Entry/Descent/Landing module wasused
in DS1. The second re-use of MPF was done for thesM
Exploration Rover mission (MER). Actually, the carkthe
development team for
development team for MPF. So, in some sense, thiage

from MPF was more direct than for DS1. However, the

flight software (more than) quadrupled becausenofaéased
functionalities and changes in the overall designthe

MER was the same as the



spacecraft. For example, while both the rover ahd t index structures. It seems that with MER we reactied
spacecraft had their own software on MPF, MER went maximal workload the database can sustain, whickema

different route and had the rover controlled theoleh
spacecraft, even during cruise and landing.

From a static analysis point of view, the threetays are
quite similar since they use the same (object-tegtreven
though they were developed in C) software architecas
well as some modules (such as the quaternion Yipr&or
example, all systems are multi-threaded and they the

the analysis time become non-linear. We are cuyent
investigating ways to improve the database resptinze
The second reason for the slow response timesdrli¢gise
imprecision of our alias analysis. As mentioned v&ho
callback replies are cast as integers when theplaced in
messages. This causes the analysis to lose trablkemfand
therefore to make some conservative approximatatait
the binding of these replies. This resulted in tngabig

threading package of VxWorks. Communication betweerstrongly connected components (SCC) in the calplyr@n
threads is done using message queues. Even thougther words, recursive calls involving lots of ftinos). Our

messages are quite complex (e.g., they contaiomigtdata
but also references to callback replies), theysamalized
into arrays of integers. Thus, in some cases, tl@ysis
loses information about for example the call flooy, the
sizes of matrices passed from one module to the s
was a major source of imprecision in our analysemther
important factor is the size of these applicatidégerall, the
increased complexity of the missions was refledtedhe
size of each application. As Table 1 shows, the snges
from 140 KLOCs to 540 KLOCs and the number of tdeea
increased from 23 to more than one hundred in MER.

Table 1. Software complexity for MPF family.

MPF DS1 MER
Size (in KLOCs) 140 280 540
#threads 23 40 100+

The results for the MPF family were very good. Tisisiot
surprising since we design CGS to work well fos thamily.

first run of CGS on MER showed an SCC of more than
10000 functions (almost all the functions in MERcs there
are about 11588 functions in our version of MERY B
making the analysis ignore some of the low levelkfions

we were able to cut this set to 1000 functionssTistill a
huge drain on the response time since the analgsds to
perform a fix-point iteration over every SCC.

Obviously, more work is needed to refine the pieaiand
the response time as flight software systems aténge
larger and larger as well as more and more comgiex.
example, the flight software system for MSL (the rMa
Science Laboratory mission) is expected to reabtL OCs.
Yet, we are quite happy with the current resulspeeially
when we compare them with the results we obtainguai
commercial static analyzer as described in [3]. d&e now
analyze the whole system without having to cuh ipieces.
Moreover, our processing time for the whole sys{&40
KLOC) is of the same order as the average proagdsire
of the commercial analyzer for a 40 KLOC-size slice

Shuttle and Space Station Flight Software

The application of CGS to flight software for theutle and
the International Space Station (ISS) is part tdcnology
infusion effort. Our goal is to teach NASA develop® use
CGS and adopt it for regular use on their projeltsthis

In fact, we used the MPF and DS1 software as téstbe particular case, three developers from the Marshight
during the development of CGS. It made for uneas¥space Center (MSFC) came to NASA Ames, got trained

debugging since they are quite large softwarejtlydave us
a very realistic “tuning” base. Overall, we obtalnabout
85% precision (the percentage of checks that assified
with certainty as correct, incorrect, or unreachablThe
average running times were about 1.5 hours for MR&

about 3 hours for DS1. The analysis of MER took Imuc

longer (about 24 hours). There are two major reagon
that. First, the sheer size of MER (540 KLOCs) ikig
factor. This translated into storing tables (esalcfor alias
information) holding two or three millions artifacin the
database. Loading and populating such big tables @alot
of time. Moreover, their storage in memory (whisHimited

using CGS, and used CGS on flight software systineg
had developed at MSFC. Overall, we analyzed fivelules.

(1) The Application Processor (AP) module is part & th
flight software for the Advanced Video Guidance
Sensor (AVGS), which flew as experiments on two
Space Shuttle missions and will be the primary @ens
for the close-proximity operation in the DART
mission. The DART mission seeks to advance the stat
of the art in safe and reliable autonomous rendezvo
capabilities at NASA. The AP module represents abou
12 KLOCs of C code.

to 1 GB per process on our machines) needs to be

optimized. Unfortunately, it is mostly done at thagense of
the analysis time. Overall, we were disappointedthia

(2) The 10 Processor (IOP) module is also part of the
AVGS. It represents 7 KLOCs of C code.

performance of the database we used (PostgreSQL).

Manipulations of large tables were slow even wiith tise of

6



(3) The goal of the Materials Science Research RacKhe B-RIC formats telemetry data received from Bagb

(MSRR) aboard the ISS is to offer capabilities to
facilitate a wide range of materials science
investigations. For example, the facility will pide

the common subsystems and interfaces requiredhéor t
operation of experiment hardware,
telescience capabilities, and provide the capglfidit

for download to the ground, and creates HHR ando@dy
Health and Status (H&S) data for transmission &I85.

The B-RIC software is about 50 KLOCs of C code. The

accommodatesoftware is made of five modules (each running on a

different board within the Habitat Holding Rackathvere

simultaneous on-orbit processing. This applicationanalyzed separately:

consists of 55 KLOCs of C code.

(4)
life support in the ISS. The UPA controller consiet
47 KLOCs of C code.

(5) Finally, the Ilast module is the boot loader

(BOOTLDR) for the shuttle engine controller. It s

of 7 KLOC of C code. The MSFC development team is

also in the process of using static analyzers {diog
CGS) to analyze the whole controller. However, we d
not have results for this experiment.

The results for these modules were neither goodbaai:

The Urine Processor Assembly (UPA) is part of the

(1) Video Digitalization Compression Card (VDCC). This
module implements the video controller for monitgri
the biological experiments. It is the most complex
module of the software. It contains 32 KLOCs.

(2) High Rate Link Card (HRLC). This module manages

the communications between the HHR and the ground

control on Earth. It contains 16 KLOCs.

(8) Serial Card 1553 (SC1553). This module manages the

communications between the HHR and the astronaut

laptops via the 1553 synchronous network of the ISS

It contains 9 KLOCs.

First, the response times of these analyses arg ver

satisfying. Each analysis was only a matter of meiswn
laptop (i.e., machines that are slower and hawe riesmory
than the desktops we use for the analysis of thes MP
family). Second, the precision was quite good (acb85%),
but it revealed some flaws in CGS. For exampleicttires
with bit fields were not treated properly. Moreovee had
problems with pointers to physical hardware devicdse
analysis cannot find any size information and g&réfore
assumes that the size is zero. This deficiencytpaint the

(4) Serial Card (SERC). The SERC software module is
the serial communications link to the HHR. It cins

a bit less than 1 KLOCs.

(5) Main Controller Card (MCC). This software modue i
the main controller for the HHR. It contains 19

KLOCs.

The results of the analyses are quite surprisimguoand

need for user information. We are in the process ofhow that we need to adapt CGS to this type oivsoé. For

implementing an interface that a user could usgive such
information. This experiment was also a good opputy to
get feedback from CGS users who are not part of th
development team. It gave us some useful usaldity. For

example, the precision is 30%, which is quite disapting.
Moreover, about 35% of the checks classified asairer
grrors are not errors. After further (manual) stigation,
we found that this is due to hardware pointers. iEbkation

example, it is clear that CGS needs to provide typ®f the source code verification with CGS without

information when the results are scanned by theuser. It
was very cumbersome for users to track the typ@rimdtion
across code and header files. We are thereforeeimgiting
a function that dumps type information in the datsh
thereby making it directly available to a user.

Space Station Biological Experiment Software

This experiment was the opportunity for us to t@%on a
different type of software. The Habitat Holding R4EIHR)
software is not a flight software system in thessethat it is
not controlling a spacecraft or a rover; it corgrblological
experiments done on the International Space Stafite
HHR is the central part of the biological and stifen
experiments to be conducted on-orbit and on thergtdor
the UF-3 and future missions. The Biological Reskear
Project Rack Interface Controller (B-RIC) and Ciuatre
Rack Interface Controller (C-RIC) are the commamd a
control components of the HHR. The C-RIC being
unavailable at the time, CGS was applied only &BFRIC.

attachments to external devices and/or interfabesvs up

as repeated errors for all instances where thereois
connectivity. For example, in the SERC Module, the
Payload Manager Function queries the Payload Table.
Because that Function depends on an external lamk f
execution, the CGS Tool tagged all instances dé e red
errors. Anyway, the analysis times are also quite
disappointing given the sizes of the modules baimgyzed.

In general, the analyses took from 30 minutes toodrs,
except for the VDCC modules which took 14 hourse &ve

still in the process of analyzing these moduledirtd out
what causes such long analysis times. Given thaseth
analyses were performed on a laptop with poor (nmgraod
processing speed) performances, our current gsesisat
CGS spent most of its processing time doing garbage
collection. This assumption needs to be verified.



5. LESSONSLEARNED

The first lesson is that scaling up to large prograequires
a fine-grained control of the dynamic allocationdata in
the analyzer. In our case, the use of a garbadectml frees
us from having to manage all de-allocations, bfbiites us
to be smart in our use of memory allocation. Indetheé

garbage collector used in CGS has a limit of 1 @Bich

cannot be changed. Therefore, we need to ensure¢hare
not allocating more than 1 GB of memory, knowingttthe
garbage collector might allocate larger chunk ofnoey

than is needed by the data we manipulate. Of cptlreesize
of the memory blocks allocated by the garbage ctlecan
be set to (almost) any arbitrary size. Howeverucaty the
size of the blocks also triggers more frequentsctdl the
garbage collector, thus impacting the response timthe

analysis.

The second lesson concerns the use of a databasntge
permanent artifacts. In our original mindset, th@LS
database operations could be used to efficientippede
functions on the artifacts (e.g., alias tabled, tedlle, and so
on) in the database, rather than having to pulbitita out of
the database, compute the function, and dump thétsdan

the database again. This turned out to be an ustieal

expectation. Database operations are too slowhatr: So,

also have reported on the use of CGS on real NASA
software systems ranging from the flight contrdtware for
three JPL missions (MPF, DS1, and MER) to software
controlling experiments on the International Sp&tation.

We observed that CGS scales without producing nfizing
positives to the large JPL applications (over 5000Ks).

We expected this result since we designed our sisaly
algorithms to work well with the software followinthe
MPF family. Similarly, the low precision and resgertimes

of CGS in the analysis of the Habitat Holding Raokware

are not surprising; we did not specialize CGS Higs type of
software. Anyway, we conjecture that the slow resgo
times may be due to running the analysis on under-
performing hardware (laptop with low processingespand
litle memory capacity). However, as of now, we ratnyet
pinpoint what coding practices caused the precision
problems. Still we are confident that, after stndyithe
results closer we can tune CGS to work well forthdse
applications, and therefore, be applicable to &ithNASA
missions.

the biggest gain in using a database is that it can

automatically handle distributed requests. Finallynight
be possible to optimize the database accessesyayining
large tables into hierarchies of small tables. Hmwethis is

possible only if the keys used to access datadrahles are

consistent throughout the analysis.

The third lesson is that distributing the analydees not
always pay off, unless you can run the analysiadruly
parallel machine. Indeed, in many phases of théysisahe

network access times (for loading or storing analys

artifacts or synchronizing with other processegjveigh the
processing time required by the analysis. Therefondess

processes can communicate without going through a

network, the analysis might be slowed down. Typycate
observed that the gains from distributing the asialjevel

off when we use more than four processors (which

represents two machines since each of our machiaes
dual processors). Finally, using PVM to distributee
analysis really hampered the debugging of CGS.wds$

quite hard to pinpoint crashes because most agalysi

processes died without giving any information b&zkhe
master process.

6. CONCLUSION

In this paper, we have given a short introductmtGlobal

Surveyor (CGS), a static analyzer based on Abstract

Interpretation. CGS can find array-out-of-bound amdl
pointer de-reference errors in embedded C prograifes.
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